LISTEN LIVE KPR - On Air: Listen Live to classical, jazz and NPR news Schedule LATEST
KPR 2 - On Air: Listen live to KPR's all talk-radio service, KPR2 Recordings

Share this page              

Robot Muscles Inspired By Origami Lift 1000 Times Their Weight

A demonstration of strength of the artificial muscle.

The delicate art of paper folding is playing a crucial role in designing robotic artificial muscles that are startlingly strong. In fact, the researchers say they can lift objects 1,000 times their own weight.

The researchers say the muscles are soft, so they're safer compared to traditional metal robots in environments where they would interact with humans or delicate objects, and they can be made out of extremely low-cost materials such as plastic bags and card stock. Their findings were published this week in Proceedings of the National Academy of Sciences.

"It was surprising that they were so strong. ... I was surprised based upon the simplicity of this architecture, it's very simple," Robert Wood, a Harvard professor of engineering and applied sciences, tells The Two-Way.

"I still remember the first demo we saw of the system lifting a tire – and it was like whoa, we've got to model this," adds Daniela Rus, director of MIT's Computer Science and Artificial Intelligence Laboratory.

The artificial muscles work by encasing in a plastic "skin" a folded origami-like "skeleton" capable of expanding and contracting. The device expands as water or air is pushed into it, and contracts as the water or air is pumped out. Rus explains how this works:

"The fluid medium fills the entire space between the skeleton and the skin and in the initial stage the pressure of the internal and external fluids are equal. But as the volume of the internal fluid is changed, a new equilibrium is achieved.

"And this is due to the pressure difference between the internal and external fluids that induces tension in the flexible skin and the tension acts on the skeleton and in turn drives the transformation that is defined by the geometric structure of the skeleton. So if the skeleton compresses as a brick shape, that is the transformation you will achieve."

The researchers say the way that the origami skeleton is folded determines the motion that the artificial muscles will make as they expand or contract. They can be programmed, or folded, to move along multiple axes and to bend and rotate.

Because it is able to lift heavy payloads, the design, Wood says, overcomes a core paradox of the field of soft robotics: "You're typically giving up strength because you're using soft materials."

The devices are so strong, Rus says, because their design amplifies force much like a pulley or a lever does. As the origami structure inside contracts, and the outer plastic skin pulls in, it converts "the fluid pressure to a large tension force on the skin." Based on their models, she says the researchers believe a 1 kilogram artificial muscle could lift 1,000 kilograms.

Wood adds that he sees these models working well in environments like homes or hospitals, where they might interact with humans. "They're strong so we can envision things that have standalone robotic arms, that can manipulate large heavy objects yet be safe to operate around," he says.

Other applications could be wearable robots or robots used in surgery – "things that have to be delicate in order to not harm an operator or user, yet strong enough to lift heavy loads," Wood says.

Rus adds that she envisions these artificial muscles helping people who use wheelchairs to stand. "We could really bring soft strong mobility to people who are otherwise unable to move."

An upcoming challenge for the team is to mimic a prime example from nature of power and softness: they want to design a robotic elephant using these artificial muscles, capable of lifting heavy loads with soft materials.

Copyright 2017 NPR. To see more, visit

Tower Frequencies

91.5 FM KANU Lawrence, Topeka, Kansas City
96.1 FM K241AR Lawrence (KPR2)
89.7 FM KANH Emporia
99.5 FM K258BT Manhattan
97.9 FM K250AY Manhattan (KPR2)
91.3 FM  KANV Junction City, Olsburg
89.9 FM K210CR Atchison
90.3 FM KANQ Chanute

See the Coverage Map for more details

Contact Us

Kansas Public Radio
1120 West 11th Street
Lawrence, KS 66044
Download Map
785-864-4530 (Main Line)
888-577-5268 (Toll Free)